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ABSTRACT 

The U.S. Army Corps of Engineers Research and 

Development Center’s (ERDC) Battlespace Terrain Reasoning 

and Awareness-Battle Command (BTRA-BC) Battle Engine (BBE) 

is a tool that enables command staffs to semi-automate the 

creation and evaluation of potential courses of action 

(COA) for use in military planning.  The BBE uses data 

generated during the initial steps of the Military Decision 

Making Process (MDMP) and a genetic algorithm to produce 

and evaluate a population of COAs.  This thesis provides a 

basic background of both the MDMP and genetic algorithms.  

It describes the features of the BBE and the parameters 

that control its genetic algorithm.  The thesis describes  

an experiment to test the genetic algorithm parameter 

effects on the BBE search results.  The results of this 

experiment and research are used to provide recommendations 

to improve the performance and functionality of the BBE. 
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I. INTRODUCTION  

A. THE MILITARY DECISION-MAKING PROCESS 

According to the United States Army Field Manual, the 

military decision-making process (MDMP) is a “proven 

analytical process,” that can help “the commander and his 

staff examine a battlefield situation and reach logical 

decisions” (U.S. Army, 1997, pp. 5-1).  While there are 

several advantages to using the MDMP, its critical weakness 

is that it is a time-consuming process.  A central part of 

the MDMP is the development, analysis, and comparison of 

Friendly and Enemy Courses of Action (FCOAs and ECOAs).   

At the lowest level, the evaluation of COAs can be 

accomplished by moving annotated post-it notes across a map 

of the operational area, also called a “yellow sticky 

drill” (Schlabach, 2008, p. 8).  These post-it notes (or 

“yellow stickies”) represent tactical units and allow 

planners to see how particular FCOAs and ECOAs fare against 

each other.  As friendly and enemy units are moved across 

the map, approximations about unit strength and ability are 

used to resolve engagements and calculate losses.  Figure 1 

shows a group of planners engaged in a yellow sticky drill. 
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Figure 1.   Wargaming using the yellow sticky drill (From 
Schlabach, 2008, p. 8) 

Ultimately, the number of COAs that could be tested 

depended on the amount time available for wargaming.  The 

need to make timely decisions may rush mission planners and 

not allow for an adequate investigation of all possible 

options. 

B. FASTER COA CREATION 

The U.S. Army Corps of Engineers Research and 

Development Center (ERDC) is currently working on a 

software tool to semi-automate the process of COA creation 

and evaluation.  The Battlespace Terrain Reasoning and 

Awareness–Battle Command (BTRA-BC) Battle Engine (BBE) is a 

tool that enables command staff to quickly conduct military 

planning and evaluation of battle plans.  The BBE gives its 

users the ability to construct tactical units with defined 

attack, defense, and other attributes.  It also 

incorporates terrain data to provide a map of the 

operational area with distinct mobility corridors.  These 

building blocks enable planners to quickly construct COAs 

and conduct a virtual yellow sticky drill.  Additionally, 
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the BBE abstracts COA characteristics, such as unit 

formations, movements, and responsibilities to a binary 

string.  The COAs can then be evaluated and scored 

according to the user’s desired criteria.  Finally, the BBE 

also has the ability to apply a genetic algorithm to the 

COA binary string to produce thousands of possible 

alternative COAs and their respective evaluations. 

C. GENETIC ALGORITHMS 

Developed by John Holland in the early 1970s, genetic 

algorithms reflected his belief that features of natural 

evolution could be used by a computer algorithm to solve 

difficult problems (Davis, 1991, p. 3).  Genetic algorithms 

rely on a pool of possible solutions to a given problem.  

These solutions are encoded as binary strings and 

evaluated.  Then a portion of the possible solutions are 

selected for reproduction, with higher ranking solutions 

having a greater probability of selection.  Reproducing 

solution strings are paired as parents and recombine with 

each other to create new child solution strings.  

Additionally, some strings are mutated, to reflect 

biological evolution, and provide more diverse solutions.  

The new strings are evaluated and added to the pool of 

possible solutions to create the next generation of 

strings.  Since better performing solution strings have a 

greater probability to be selected for reproduction, each 

generation should contain increasingly higher performing 

solutions.   

Holland explained the power of genetic algorithms in 

his schema theorem.  He identified patterns in the solution 

strings called schema.  These schemata represented partial 
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pieces of a total solution.  Through the breeding process, 

more successful schema are brought together to make 

improved solution strings.  This process allows genetic 

algorithms to evaluate and combine multiple schemata 

simultaneously. 

D. REASEARCH QUESTIONS 

The BBE’s genetic algorithm allows it to essentially 

conduct multiple yellow sticky drills for each generation 

of COAs that it produces.  While this is an important 

feature of the software, it is important to understand how 

the genetic algorithm behaves and what it is actually 

producing for the user.  Additionally, the BBE gives its 

users several advanced controls over the genetic algorithm.  

These capabilities raise the following areas of research: 

1. Does the BBE’s genetic algorithm actually provide 
a significant number of useful alternative FCOAs?  
Can the user separate tactically desirable FCOAs 
from outcomes that are not logical?  

2. How do changes to the genetic algorithm 
parameters affect the FCOAs that are produced?  
How do parameters affect the diversity and 
convergence of the BBE results? 

3. Does the BBE provide adequate background on the 
genetic algorithm and its settings to allow users 
to understand what they are actually changing?  
Should the BBE explain the effects, benefits, and 
limitations of the genetic algorithm settings? 

E. SCOPE  

The main goal of this thesis is to determine what 

effects the genetic algorithm parameters have, and to 

suggest possible improvements to the program regarding the 

genetic algorithm.  This thesis will examine how the 
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genetic algorithm parameters affect output and the 

diversity of the suggested FCOAs. The thesis will provide 

background information on the MDMP and genetic algorithms 

that are applicable to the BBE.  Since any discussion of a 

particular piece of the BBE will require a basic 

understanding the complete program, a simple background of 

the BBE will be provided.   

F. ORGANIZATION OF THESIS 

This thesis is organized into the following chapters. 

Chapter I—Introduction.  This chapter gives an 

abstract description of the MDMP, the BBE, and genetic 

algorithms.  It also identifies the research questions and 

scope of the thesis.  

Chapter II—Background.  This chapter has two main 

focuses, the MDMP and genetic algorithms.  The chapter 

provides basic understanding of both and assists in 

understanding the BBE functions and settings. 

Chapter III—The BBE.  This chapter outlines some of 

the features of the BBE, particularly the parts of the 

program that involve the genetic algorithm. 

Chapter IV—Methods.  This chapter describes the 

evaluation of the BBE’s genetic algorithm and its various 

settings. 

Chapter V—Results and Analysis.  This chapter outlines 

the results of the BBE runs analysis of the findings. 
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Chapter VI—Conclusions and Recommendations.  This 

chapter states what conclusions can be drawn from the 

evaluation and suggests improvements to the BBE.  It also 

includes the future work section. 
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II. BACKGROUND 

A. INTRODUCTION 

Before discussing the BBE, it is important to provide 

some background information on both the MDMP and genetic 

algorithms.  This chapter gives an outline of the steps in 

the MDMP and illustrates the time commitment involved.  

This chapter also provides a basic explanation of genetic 

algorithms and the different techniques involved in their 

implementation. 

B. THE MILITARY DECISION-MAKING PROCESS 

The U.S. Army Field Manual 101 Chapter 51 outlines the 

Military Decision-Making Process (MDMP).  According to the 

field manual, there are seven steps in the process:  

Receipt of Mission, Mission Analysis, COA Development, COA 

Analysis, COA Comparison, COA Approval, and Orders 

Production.  Figure 2 illustrates the flow of the MDMP as 

well as the Commander’s responsibilities at each step. 

1. Receipt of Mission 

The MDMP starts with the receipt of the mission.  

Critical products of this step include the commander’s 

initial guidance and a warning order.  These products 

outline the time allocation, personnel, and operations 

necessary to continue the MDMP. 

                     
1 This publication has been superseded by Field Manual 5-0 Army 

Planning and Orders Production published in January 2005.  The steps in 
the MDMP process are the same and for background information purposes 
there are no significant changes. 



 8

 

Figure 2.   The Military Decision-Making Process (From U.S. 
Army, 1997, pp. 5-2) 

2. Mission Analysis 

The second step in the process, mission analysis, is 

important because “it allows the commander to begin his 

battlefield visualization” (U.S. Army, 1997, 5-5).  The 

field manual outlines 17 steps for mission analysis, 

illustrated in Figure 3.  These steps do not have to be 

completed in order.  A critical step in mission analysis is 

to conduct the Intelligence Preparation of the Battlefield 

(IPB) process.  The IPB defines the operational 

environment, analyzes threats, and identifies possible 

ECOAs (U. S. Army, pp. 5-6).  IPB products such as the 

enemy order of battle and the modified combined obstacle 

overlay (MCOO) “are updated and used throughout [the MDMP 

process]” (U.S. Army, 1997, pp. 5-6).  The warning order 
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containing a summary of information gathered in the 

previous steps is the final product of mission analysis.  

 

Figure 3.   The steps in mission analysis (From U.S. Army, 1997, 
pp. 5-5) 

3. COA Development 

In this step, the staff begins to develop plans that 

are able to meet mission objectives as well as remain 

aligned with the commander’s intent and guidance outlined 

in the warning order.  The COA is expected to meet five 

basic criteria.  The COA must be suitable for the mission.  

It should be feasible with available resources.  It has to 

be acceptable in terms of risk verse reward.  The COA must 

be distinguishable from other proposed plans of action.  

Finally, the COA must be a complete statement of the 

mission and objectives (U.S. Army, 1997, pp. 5-11).  It is 

important note that this step is not complete with the 

creation of one COA, but instead, generates multiple 
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options for the commander.  Each COA is accompanied by a 

COA statement and sketch.  The statement gives a quick 

summary of the unit movements and objectives.  The sketch 

provides a visual illustration of the COA.  An example of a 

COA statement and sketch is provided in Figure 4. 

 

Figure 4.   An example of COA statement and Sketch (From U.S. 
Army, 1997, pp. 5-15)  
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4. COA Analysis (War Game) 

The analysis or “war gaming” is the process through 

which a COA is tested, modified, and improved (U.S. Army, 

1997, pp. 5-16).  In this step, each COA is enacted on 

paper against likely ECOAs and evaluated.  The criteria for 

the evaluation are based on the principles of war, 

doctrinal fundamentals, the commander’s intent, and the 

level of residual risk (U.S. Army, 1997, pp. 5-18).  The 

field manual describes three recommended techniques for war 

gaming. 

a. Belt War Gaming 

This style of war gaming divides the area of 

operations (AO) into a series of distinct sections or belts 

that run the full width of the battlespace.  The belt 

technique is useful for phased operations, situations 

facing an enemy arrayed in echelons, or terrain that can be 

easily divided (U.S. Army, 1997, pp. 5-18).  Events in each 

belt are analyzed in order and any particular belt can 

contain more than one critical event (U.S. Army, 1997, pp. 

5-18).  An example of belt war gaming is seen in Figure 5. 

 

Figure 5.   Belt war gaming (From U.S. Army, 1997, pp. 5-18) 
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b. Avenue-in-depth War Gaming 

The avenue-in-Depth technique isolates each 

avenue of approach in a particular COA and examines it 

individually.  This style is particularly useful in 

offensive battles or when terrain forces movements in to 

set channels (U.S. Army, 1997, pp. 5-19).  An example is 

provided in Figure 6. 

 

Figure 6.   Avenue-in-depth war gaming (From U.S. Army, 1997, 
pp. 5-19) 

c. Box War Gaming 

Box war gaming analyzes only important areas of 

the AO, such as enemy engagement zones or locations of 

critical objectives.  This style is best used in limited 

time and narrows the focus efforts on essential tasks (U.S. 

Army, 1997, pp. 5-19).  An example of box war gaming is 

shown in Figure 7. 
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Figure 7.   Box war gaming (From U.S. Army, 1997, pp. 5-19) 

Once a technique has been selected the war game 

“follows an action-reaction-counteraction cycle” (U.S. 

Army, 1997, pp. 5-22).  Offensive units initiate an action 

that the defensive unit responds to with a reaction.  The 

offensive unit can then answer the reaction with a counter 

action.  This cycle continues until completion of the COA 

or it becomes apparent that the COA is not suitable.  War 

game results are recorded and the acceptable COAs are 

refined to include updated task organizations and missions. 

5. COA Comparison 

The main product during this step is the COA decision 

matrix.  The decision matrix uses results from the war 

gaming exercises to highlight advantages and disadvantages 

of the COAs that were found to be suitable.  There is no 

standard decision matrix, and each command may have a 

different style.  A decision matrix can have quantitative 

or subjective information displayed.  The only requirement 

is that it satisfies the commander and it provides a quick, 

consistent, and accurate comparison of the available COAs.  

Figure 8 provides an example of a decision matrix showing 

both subjective analysis and comparison over categories. 
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Figure 8.   Example decision matrix showing two ways to make 
comparisons (From U.S. Army, 1997, pp. 5-26) 

6. COA Approval 

At this step, the commander selects the COA that he 

believes to “be most advantageous” (U.S. Army, 1997, pp. 5-

26).  He also refines his intent statement and resource 

requirements to be in line with the approved COA.  A final 

warning order is issued that reflects the COA selection and 

new information. 

7. Orders Production 

The final step in the process results in the 

production of an OPLAN or OPORD that reflects the COA 

selected in the previous step.  The staff expands the COA 

into a concept of operations statement that subordinates 

can use to guide their actions.  This statement makes clear 

“where, when, and how to concentrate combat power to 
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accomplish the mission in accordance with [the] higher 

commander’s intent” (U.S. Army, 1997, pp. 5-27). 

The MDMP is a thorough but typically manpower 

intensive process.  Figure 9 illustrates the various 

products that are required and produced at each step in the 

process.  Since each step flows naturally into the next, 

and in turn is dependent on the previous step, time cannot 

be saved by skipping or eliminating steps in the process.  

Instead, the process can be shortened by faster creation 

and evaluation of COAs or reducing the number of COAs 

created. 

 
Figure 9.   Staff inputs and outputs (From U.S. Army, 1997, p. 

4) 
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C. GENETIC ALGORITHMS 

Genetic algorithms were developed in the early 1970s 

by John Holland in order to mimic the mechanisms that drove 

natural evolution and to apply them to solving complex 

problems (Davis, 1991, p. 2).  The process of evolution is 

dependent on chromosomes which act as the “encoding 

structure of living beings” (Davis, 1991, p. 2).  The 

Handbook of Genetic Algorithms, notes the following 

features of evolution: 

 The process does not operate on living beings but 
on their chromosomes. 

 Natural selection is the determining factor of 
successful chromosomes.  Beings that have more 
favorable chromosome encodings will reproduce 
more than those that do not. 

 Evolution takes place in reproduction.  
Recombination and mutation create new chromosomes 
from two parents in the child. 

 Evolution is done without memory.  The knowledge 
of producing successful individuals is contained 
in the gene pool of a population. (Davis, 1991, 
pp. 2-3). 

These features of evolution highlight some of the 

requirements and characteristics of genetic algorithms.  

Genetic algorithms are useful for searching a population of 

possible solutions for the most appropriate one.  Genetic 

algorithms require that each possible solution in the 

population be “coded as a finite-length string” (Goldberg, 

1989, p. 7).  This is usually assumed to be a binary 

string.  Genetic algorithms also require a type of 

evaluation function to play the role of natural selection.  

An evaluation, or “fitness,” function is the “link between 

the genetic algorithm and the problem to be solved” (Davis, 
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1991, p. 4).  This function can take any possible solution 

string and return the value of its fitness.  This 

information is then used by the genetic algorithm to 

determine reproduction rates.  Like evolution, the 

reproduction process in a genetic algorithm is the main way 

new encodings are introduced into the population.  Parent 

strings are selected and paired according to their fitness 

function and mated with each other creating one or more 

offspring (Haupt, 2004, pp. 41).  The offspring represent a 

recombination of the strings and, as Holland stated in the 

schema theorem, the patterns (schema) present in the 

parents.  Additionally, some strings may be mutated by 

having some of their bit values changed.  Mutations are 

important because they “introduce traits not in the 

original population,” (Haupt, 2004, p. 43) and ensure that 

the algorithm has the ability to generate all the possible 

encodings of a solution.  Finally, the new offspring are 

introduced into the population and the process repeats 

itself.  

1. Advantages of Genetic Algorithms 

Genetic Algorithms are not the only way to solve 

complex problems, but they do offer several advantages over 

more traditional methods.  For example, consider a function 

with a solution space shaped like a mountain.  The peak of 

the mountain could be found by having an algorithm choose 

any random point on it.  The algorithm would examine the 

surrounding points and move to the highest one.  This 

process would repeat until the algorithm returned a 

location that had no higher surrounding points.  This 

method is called hill climbing (Goldberg, 1989, pp. 3), and 
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while it is useful for a single mountain, it cannot be used 

to find the highest point in a solution space that includes 

multiple peaks.  Hill climbing is susceptible to any local 

maximums in the solution space it is searching.  It will 

find a peak of any mountain in the solution space, but 

there is no guarantee that the particular peak it returns 

is the highest one. Figure 10 illustrates the weakness of 

hill climbing.  

 

   

Figure 10.   Hill climbing can easily find the peak of the 
first surface, but it may become caught in the local 
maximum on the second (From Goldberg, 1989, pp. 3-4) 

Unlike hill climbing, a genetic algorithm is able to 

search solution spaces with multiple local maximums more 

robustly.  In the above mountain range example, a genetic 

algorithm starts with a population of locations and a 

fitness function that can return the elevation of any given 

point.  Since points with higher elevations are more likely 

to be selected and reproduce the average elevation of the 

population will increase over a number of generations.  

Additionally, mutations ensure that the entire range of 

possible locations remains available to the algorithm.  The  
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ability to choose the best point of a population of 

locations allows the algorithm to move past any local 

maximum it encounters. 

2. The Basic Genetic Algorithm  

Given the basic building blocks of a population of 

encoded solutions, a fitness function, and a reproduction 

process, a variety of different genetic algorithms can be 

produced.  While the building blocks may change depending 

on the behavior desired by the developer, each instance of 

a genetic algorithm follows similar steps. 

1. Initialize a population of possible solution 

strings. 

2. Evaluate each string according to the fitness 

function. 

3. Create new strings by mating the current strings.  

The probability of being selected for mating of 

any particular string is determined by its 

fitness score.  Strings with higher fitness 

scores have a higher probability to reproduce. 

4. Delete members of the population as needed to 

maintain desired number of strings. 

5. Evaluate the new strings and insert them into the 

population. 

6. If an end-state is reached, return the solution 

encoded by the string with the highest fitness 

score; else, repeat process from step 3.  (Davis, 

1991, p. 5). 
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These steps represent the most basic implementation of 

a genetic algorithm.  Different techniques for population 

control, parent selection, and reproduction allow 

programmers to tailor the performance of the algorithm. 

3. Population Controls 

The population of a genetic algorithm contains the 

combined knowledge or explored area of a problem space.  

There is no set required population size or need for the 

population to remain constant in the algorithm (Goldberg, 

1989, p. 62).  However, some instances of the algorithm do 

mandate maximum, minimum, or even constant levels of 

population. 

Without the removal of some strings, the population 

size will increase with each generation as new solutions 

are generated by reproduction.  Generational genetic 

algorithms discard all of the parent strings and form a new 

population from their children in every generation (Coley, 

1999, p. 83).  This prevents growth of the population but 

risks losing many of the best solution strings through 

failures to reproduce, recombination, and mutation. 

To help preserve higher ranking strings through 

multiple generations, but still maintain a set population 

size, many genetic algorithms use steady-state 

reproduction.  Steady-state reproduction creates a set 

number of new strings and removes an equal amount in each 

generation (Davis, 1991, p. 35).  The determination of 

which strings to remove is usually based on fitness scores.  

Additionally an algorithm can discard child strings that 

are duplicates of strings already in the population (Davis,  
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1991, p. 37).  The benefit of removing duplicates is a 

“more efficient use of our allotted number of chromosomes 

[strings]” (Davis, 1991, p. 37). 

Two other issues that affect the population of a 

genetic algorithm are elitism and seeding.  Elitism entails 

ensuring that the string with the highest fitness score is 

carried from one generation to the next (Haupt, 2004, p. 

245).  This ensures that the most suitable solution 

discovered so far is not lost due to failure to reproduce 

or mutation.  Seeding is done by inserting “good guesses to 

the optimum [string] values in the initial population” 

(Haupt, 2004, p. 249).  Additionally, seeding can take 

place throughout the algorithm by adding good guesses to 

the population at each new generation.   

4. Parent Selection 

Parent selection in a genetic algorithm ensures that 

the strings with the highest fitness scores are given the 

best chance for reproduction.  There are a variety of ways 

to implement parent selection, with two of the most popular 

being tournament and roulette wheel selection (Haupt, 2004, 

p. 41). 

a. Tournament Selection 

Tournament selection starts by selecting a random 

sub-set of two or more solution strings from the current 

population.  The string with the highest fitness score in 

the sub-set is selected for reproduction.  This process is 

repeated until the required number of parent strings have 

been selected (Haupt, 2004, p. 40). 
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b. Roulette Wheel Selection 

The first step in roulette wheel selection is to 

calculate the sum of the fitness scores for all of the 

strings.  Next a random number between 0 and the total sum 

of the fitness scores is generated.  Then the fitness 

scores of the population are added together in sequence and 

a running total is recorded.  The string whose fitness 

score makes the running total greater than or equal to the 

random number is selected for reproduction.  A new random 

number is generated to select each subsequent parent. 

(Davis, 1991, p. 14). 

This method of selection gives each string in the 

population a position on an imaginary roulette wheel 

proportional to their relative fitness score.  The random 

number represents the ball on the wheel and is more likely 

to select strings with a greater area or higher fitness 

score.  Table 1 shows a sample population of four strings, 

their respective fitness scores, and their percentage of 

the total fitness sum.  These percentages are then used to 

create the roulette wheel shown in Figure 11. 

 

Table 1.   A sample population of four strings, their fitness 
scores, and percentage of the total fitness sum 

(From Goldberg, 1989, p. 11) 
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Figure 11.   A roulette wheel constructed from the sample 

population in Table 1 (From Goldberg, 1989, p. 11) 

One important consideration for parent selection 

methods is selective pressure.  Selective pressure is the 

ratio of the probability that the string with the highest 

fitness score is selected to the probability that the 

average string is selected (Haupt, 2004, p. 41).  If 

selective pressure is too high, diversity in new 

generations will suffer.  This is caused by the highest 

ranking string being over-selected for reproduction.  In 

tournament selection, the higher the number of strings in 

each tournament, the greater the selective pressure.  For 

roulette wheel selection, the presence of super-

individuals, strings whose fitness scores are significantly 

higher than the others, can greatly increase selective 

pressure (Alba, 2006, p. 1-9). 

5. Reproduction and Mutation 

Reproduction is the recombination of strings that have 

been selected to be parents.  Most genetic algorithms 

recombine strings in pairs.  The pairing of parent strings 

can be done randomly, or by ranking potential parents and  
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having the best available strings mate with each other.  

Additionally, some genetic algorithms can assign a 

probability that strings selected for matting with each 

other will go through the recombination process.  The most 

widespread form of recombination is through crossover. 

a. One-point Crossover 

The simplest method of recombination, one-point 

crossover, “occurs when parts of two parent chromosomes are 

swapped after a random selected point, creating two 

children” (Davis, 1991, p. 17).  An example of one-point 

crossover can be seen by first creating two parent strings: 

Parent A: 0 0 1 1 1 0 

Parent B: 1 1 1 0 0 1 

A crossover point for the two strings is then selected at 

random.  The characters occurring after the crossover point 

are swapped between the strings creating two new child 

strings.  If the crossover point for the two strings above 

came out to be three, then the strings would be divided 

like this: 

Parent A: 0 0 1 | 1 1 0 

Parent B: 0 1 1 | 0 1 1 

The new child strings would then be: 

Child A: 0 0 1 0 1 1 

Child B: 0 1 1 1 1 0 

b. Schemata 

One-point crossover illustrates the importance of 

schemata in the genetic algorithms.  A schema is a “fixed 
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template describing a subset of strings with similarities 

at certain defined positions” (Coley, 1999, p. 46).  The 

strings in the above example were constructed from the 

characters 1 and 0.  Schemata require a third character, #, 

which acts as a placeholder and can equal either 1 or 0.   

In the one-point crossover example above, both 

the parent and child strings contained the schema: 

0 # 1 # 1 # 

The following schema is only found in Parent B and Child A: 

  0 # 1 0 1 1 

Schemata have two main properties:order and defining 

length.  Order is the number of fixed positions in the 

schema (Goldberg, 1989, p. 29).  In the two schemata above, 

the first has an order of three and the second has an order 

of five.  Defining length is number of bits between the 

first and last fixed position in a schema (Goldberg, 1989, 

p. 29).  The first schema has a defining length of four and 

the second has a length of five.   

John Holland’s Schema Theorem explains how the 

manipulation of schemata through reproduction is the 

critical element of genetic algorithms.  Simplified, the 

theorem states that schemata that are found in strings with 

above average fitness scores will occur more frequently 

than those found in below average strings (Davis, 1991, p. 

20).  Additionally, when using crossover reproduction, the 

presence of schemata that have a low order, short defining 

length, and above average fitness scores increases 

exponentially in each generation (Goldberg, 1989, p. 33). 
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Holland describes the ability of genetic 

algorithms to manipulate large numbers of schemata in each 

generation as intrinsic parallelism (Davis, 1991, p. 20).  

In the early generations of a genetic algorithm, positive 

schemata are spread throughout the population, giving many 

strings parts of a good solution to the problem.  Negative 

schemata will also be spread through the population, 

meaning strings may also contain parts of a “less optimal” 

solution.  Strings with more positive schemata will be more 

likely to be selected for reproduction.  Their 

recombination with strings that also have positive 

schemata, will start to bring the “pieces” of good 

solutions together.  At the same time that positive 

schemata are being brought together, strings with mostly 

negative schemata are not as likely to be selected for 

reproduction.  This causes the negative schemata to die out 

in the population over several generations. 

c. Mutation 

Mutation is the second way that new strings are 

added to the population.  Unlike recombination, mutation 

requires only one string instead of a pair.  Mutation can 

be performed on either parent or child strings.  Mutations 

are important in the population because they allow the 

algorithm to have the possibility of generating schemata 

that cannot be created through recombination of the current 

generation.  Mutation rates are usually kept low, but can 

be changed depending on the problem being solved (Coley, 

1999, p. 22).  High mutation rates can interfere with the 

algorithm’s ability to transfer schemata between 

generations. 
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Bit mutation is one example of how a string can 

be mutated.  Each bit in the string has a probability of 

being replaced based on the mutation rate.  A mutation rate 

of 0.005 means, on average, that five out of every thousand 

bits will be replaced.  Replacement of bits can be done by 

random selection of a new bit, or by forced swapping of the 

current bit.  Random selection replacement only causes 

actual mutations in half of the bits picked for mutation.  

This is due to the possibility that the randomly-selected 

new bit value will be the same as the old value. 

d. Two-point Crossover 

A weakness of one-point crossover is that there 

are some schemata that it cannot combine (Davis, 1991, p. 

48).  This is usually seen in schemata with fixed positions 

at the edges of the solution string.  An example can be 

seen in the following two parent strings: 

Parent A:  1 1 0 0 0 1 1 

Parent B:  0 0 1 1 1 0 0 

Parent A contains the schema: 

  1 1 # # # # 1 

One-point crossover is unable to produce this schema in 

either of the child strings.  While it is possible that the 

schema could appear in the next generation due to mutation, 

it is not likely unless mutation rates are high. 

A technique to overcome this weakness is called 

two-point crossover.  It is similar to one-point crossover, 

except two random crossover points are generated.  The bits 

between the two crossover points are then swapped between 
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the two parents.  If the crossover points for the two 

strings above were two and five, then they would be divided 

like this: 

Parent A:  1 1 | 0 0 0 | 1 1 

Parent B:  0 0 | 1 1 1 | 0 0 

The following child strings would be produced: 

  Child A: 1 1 1 1 1 1 1 

  Child B: 0 0 0 0 0 0 0 

Note that the schema from above is present in Child A. 

6. Convergence 

A properly implemented genetic algorithm should see 

its population become less diverse with each generation as 

more fit schemata begin to become more prevalent according 

to the schema theorem.  The movement of the population to 

consisting of essentially similar individuals is called 

convergence (Davis, 1991, p. 25).  Looking at the two 

solution spaces from the hill climbing example in Figure 

10, a genetic algorithm would be expected to produce 

solution populations that would converge toward the peaks 

of the mountains over several generations. Convergence is 

useful because it allows the algorithm to produce higher-

quality string populations, and return better solutions.   

The less convergence that occurs in a genetic 

algorithm, the more it resembles a random inspection of all 

possible solutions.  Too much diversity between generations 

can hinder convergence, and may indicate that there is a 

problem in the implementation of the genetic algorithm.  

Generational genetic algorithms and high mutation rates 
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generally hurt convergence.  Crossover methods and 

population size can also affect convergence (Haupt, 2004, 

p. 109). 

Genetic algorithms that converge too quickly are also 

not desirable.  Convergence after only a few generations 

may mean that the algorithm is failing to make a reasonable 

search of all of the possible solution space, and makes the 

algorithm more susceptible to local peaks or valleys. .  

Additionally, continuing to produce new generations after 

convergence is inefficient.  Once mutation becomes the main 

source of new strings in a population, rather than 

recombination, the algorithm should be stopped (Haupt, 

2004, p. 47). 

7. Niches 

Niches exist as separate subdomains of a particular 

function (Goldberg, 1989, p. 185).  In the example of 

searching a mountain range for the highest point, each 

individual mountain could be thought of as a separate 

niche.  Searching for the highest point with a simple 

genetic algorithm will produce a population of locations 

centered on the peak of the highest mountain.  To produce a 

population containing representations of the niches around 

each of the peaks requires modification of the basic 

genetic algorithm. 

One solution, proposed by David Goldberg and Jon 

Richardson, uses a sharing function to calculate how 

“similar” an individual string is to other strings.  Higher 

sharing values indicate a string exists in the same general 

location of several other strings.  The string’s fitness 

function is then divided by its sharing value to produce a 
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degraded fitness score.  The degraded fitness score is then 

used for selecting parents for reproduction in the genetic 

algorithm (Goldberg, 1989, pp. 191-192).  The net effect of 

the sharing function is that strings that are similar to 

other strings have their fitness scores lowered, allowing 

dissimilar strings with relatively high fitness scores a 

better chance of being selected for reproduction. 

Figure 12 shows Goldberg and Richardson’s results from 

a genetic algorithm that does not use sharing, and one that 

does, when run on a multi-peak function without mutation. 
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Figure 12.   Plots for a value (x) over a multi-peak 
function, f(x).  The potential solution populations 

at generation 100 for two different genetic 
algorithms, both searching for the value of x that 
maximizes f(x) are marked as points on the curve and 

circled.  The first genetic algorithm includes 
sharing in its fitness function, while the second 

does not (After Goldberg, 1989, p. 194) 
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David Goldberg also outlines work by Kenneth De Jong 

using overlapping populations and crowding factors to 

implement a way to find niches in a genetic algorithm 

(1989, pp. 111-116).  De Jong uses a variable called a 

generation gap to differentiate between nonoverlapping and 

overlapping populations.  In nonoverlapping populations, 

the generation gap equals one, while in overlapping 

populations it is a value between zero and one.  The 

generation gap represents the fraction of strings that will 

be selected for breeding in an overlapping population.  An 

equal number of strings are also selected at random to be 

replaced by the resulting child strings  (Goldberg, 1989, 

pp. 111). 

De Jong’s crowding model uses an overlapping 

population and a new parameter called the crowding factor.  

In the crowding model, each newly-created child string 

replaces an existing string in the population.  To select 

the string that will be replaced by a new child string, a 

sub-set of strings in the current population is created.  

The crowding factor equals the number of strings picked at 

random in the sub-set.  The string in the sub-set that is 

most like the child string, based on a bit-by-bit 

similarity count, is replaced. (Goldberg, 1989, p. 116)   

Since new strings are more likely to replace strings 

that are similar, strings with unique characteristics (but 

with possibly lower fitness scores) have a greater chance 

to be present in future generations.  This is similar to 

removing strings that are duplicates from the population. 
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D. SUMMARY 

This chapter described the steps in the MDMP and the 

process of creating and evaluating COAs.  This chapter also 

showed how genetic algorithms have the capability to solve 

complex problems, provided solutions can be encoded in some 

type of string.  The following chapter will show how the 

BBE is able to encode COAs and apply a genetic algorithm to 

rapidly create and wargame thousands of computer-generated 

COAs. 
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III. THE BTRA-BC BATTLE ENGINE 

A. INTRODUCTION 

The BTRA-BC Battle Engine (BBE) uses products created 

in the mission analysis step of the MDMP to allow planners 

to create COAs that can be evaluated and evolved in a 

genetic algorithm.  This chapter describes some of the 

basic inputs, features, and functions of the BBE.  In 

addition, the user controls of the genetic algorithm are 

defined.   

Much of the information in this chapter comes from the 

“Cognitive Amplification for Contextual Game-Theoretic 

Analysis of Military Courses of Action,” which is an 

invention disclosure for the BBE written by Jerry Schlabach 

and Eric Nielsen.   

B. MISSION ANALYSIS AND INITIAL INPUTS 

Mission, Enemy, Terrain, Troops and Time (METT-T) are 

some of the main considerations in the MDMP.  Data on all 

of these topics are gathered and studied during the IPB 

process in mission analysis.  METT-T data are some of the 

initial inputs to the BBE.  The BBE Mission Building menu, 

seen in Figure 13, is where this information is entered. 
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Figure 13.   The BBE Mission Building menu 

The Mission Building menu acts as the main hub for all 

of the BBE functions and is the initial screen presented to 

the user.  This menu allows the user to load and save 

battle scenarios.  The buttons on the left side lead to 

ECOA and FCOA construction menus and the Wargame menu.  

Tabs in the middle section allow the user to enter 

intelligence developed during the IPB.  Additionally, the 

user can enter the mission start and time slice to be used 

for simulation. 

1. Terrain 

The MCOO, traditionally produced during the IPB, gives 

mission planners an abstracted idea of the terrain in the 

operational area.  It outlines avenues of approach (AA) to 

be used by attacking forces and the lines of defensible 

terrain to be used the defending forces.  In a yellow 
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sticky drill, the MCOO would be the map that the units are 

moved across.  In the BBE, the MCOO is loaded at the bottom 

of the Mission building menu as seen in Figure 14. 

 

Figure 14.   The MCOO loader in the Mission Building menu 

The BBE uses a separate program to create MCOOs for 

battle scenarios.  The MCOO-Maker uses an abstraction of 

the operational terrain called a “Braswell Index,” to 

construct mission game boards.  The Braswell Index creates 

a network of mobility corridors around obstacles.  The 

index includes characteristics that outline combat 

multipliers for attacking and defending forces in each 

mobility corridor (Schlabach, 2009, pp. 8-9).  An example 

of a Braswell Index can be seen in Figure 15.   
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Figure 15.   An example of a Braswell Index.  The lines 
“bisect the Mobility Corridors between the obstacles” 

(From Schlabach, 2008, p. 7) 

The game boards created by the MCOO-Maker contain 

enough terrain data to enable environmental combat 

multipliers, but can still be loaded into the computer’s 

basic memory.  This allows for faster battle simulations 

than if the game board was loaded from the computer’s hard 

drive  (Schlabach, 2009, p. 9). 

The BBE game boards also contain information that 

guides the movement of offensive units and the placement of 

defensive units.  For the attacking units, the game board 

has a set of Virtual (V) Lanes that are analogous to AAs on 

a typical MCOO.  V-Lanes are a series of routes across the 

game board extend from a unit’s start point to its 

objective.  An example of a set of V-Lanes can be seen in 

Figure 16.  V-Lanes are logically parallel to each other 

and act as the guide for offensive movement in the BBE 

simulations.  Additionally, V-Lanes contain information 
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that indicates the type of attacking formations they can 

support (Schlabach, 2009, p. 10). 

For defensive units the game board identifies lines of 

defensible terrain (LDT).  LDTs are made from “neighboring 

mobility corridors upon which a coherent defense can be 

based” (Schlabach, 2009, p. 10).  LDTs usually intersect V-

Lanes and act as placement points for defending units.  An 

example of an LDT can be seen in Figure 17.   

 

Figure 16.   BBE game board with several V-Lanes 
highlighted.  The mission start point and objective 

have also been annotated. 
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Figure 17.   BBE game board with a LDT circled.  Note how it 

intersects the V-Lanes seen in Figure 16. 

2. Order of Battle 

The next elements entered into the BBE are the 

friendly and enemy orders of battle.  In the yellow sticky 

drill, these would be the post-it notes that are moved 

across the MCOO.  Data to build these units would be 

collected during the IPB process in mission analysis.  Like 

the Terrain loader, the BBE relies on an external program, 

the BBE Weapons Assessment and Calculation Tool (B-WACT), 

to provide weapon data.  Seen in Figure 18, the B-WACT 
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allows mission planners to “develop a basic relative combat 

power for individual weapons and weapon systems that 

aggregate weapons” (Schlabach, 2009, p. 11).  The combat 

power ratings are based on the “Quantitative Judgement 

Method of Analysis” (QJMA) developed by Colonel Trevor N. 

Dupuy (Schlabach, 2009, p. 11).  A list of these weapons 

can be loaded in the Weapons and Unit Types tab in the 

Mission Building menu seen in Figure 19.  Mission planners 

can also group weapon systems together to form both 

friendly and enemy units in this tab. 

 

Figure 18.   The B-WACT is used to build units for use in 
the BBE 
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Figure 19.   The Weapons and Units Types tab.  In this menu, 

mission planners can load B-WACT weapons lists and 
build units 

Once unit types have been built, the mission planner 

can begin to construct orders of battle (OB) for both the 

friendly and enemy forces.  Both sets of forces have their 

own respective OB building tabs in the Mission Building 

menu shown in Figure 20 and 21.  In these tabs, units are 

grouped together to form subordinate commands that are then 

used in COA construction.  Previous OBs can also be loaded, 

or current OBs saved, for later use.  Each subordinate is 

given a Base Power score, which is determined by the basic 

combat powers of each of its units.   
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Figure 20.   The Enemy OB tab.  The base power of the 
subordinate command is circled in red 

 
Figure 21.   The Friendly OB tab.  The subordinate command 

tabs are circled in red 
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3. Postures and Morale 

The final inputs on the Mission Building menu deal 

with the postures and morale of the respective forces and 

act as combat multipliers in the battle simulation.  

Mission developers can adjust the strength and overall 

morale of forces to reflect conditions as needed.  Morale 

can be set to five different levels ranging from 

“Excellent” to “Panic.”  Force postures are set based on a 

list that includes hasty attack, prepared attack, fortified 

defense, hasty defense, prepared defense, delay/withdraw, 

and movement to contact.  Each of these settings 

“influence[s] the attrition calculations [in the 

simulation]” (Schlabach, 2009, p. 12).  Additionally, the 

mission planner can set superiorities for each side in 

Intelligence, Surveillance, and Reconnaissance (ISR), 

Command and Control (C2), and air power.  These 

superiorities represent advantages that the respective 

forces may have in communication, intelligence, and control 

of the operational air space. The superiorities settings 

act as multipliers that affect unit attrition calculations 

in the simulations combat model.  Figure 22 shows the 

posture, morale, and superiorities controls. 

 

Figure 22.   Controls for force postures, morale and 
superiorities 
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C. COA CREATION 

After the terrain, orders of battle, and postures have 

been set, a mission planner can begin creating COAs.  Both 

ECOAs and FCOAs have their own respective creation 

interfaces, shown in Figures 23 and 25.  In these examples 

the FCOA creation menu contains offensive COA variables, 

while the ECOA has defensive variables (the attacker-

defender roles can be reversed if needed).  The top part of 

both menus contains a list of prospective COAs that have 

already been created, along with a short description of the 

COA.  Each ECOA created also has a user-provided value for 

the relative probability that the enemy will use that 

particular COA.  The BBE also provides a visualization of 

the COA setting, as seen in Figures 24 and 26. 

 

Figure 23.   The FCOA creation menu with offensive COA 
variables 
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COA variables are used to construct the bit strings 

that drive the simulation in wargaming, and can be 

manipulated in the genetic algorithm.  There are three 

types of COA variables in both offensive and defensive 

COAs.  The first type is total unit variables.  These 

variables are found on the left side of the COA creation 

menu and affect all units.  Total unit variables determine 

lanes of movement or responsibility, as well as formations 

and ground support priority.  The next type is subordinate 

unit variables.  These variables are found in the middle of 

the menu and are set for each individual unit.  The final 

type of COA variable deals with Task Organizable (TO) 

units.  TO units can be assigned to any of the subordinate 

commands in the order of battle.  The assignment of TO 

units is done on the right side of the COA creation menu.  

While offensive and defensive COAs share many of the same 

traits, there are some significant differences. 
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Figure 24.   Graphical visualization of the FCOA displayed 

in Figure 23.  Since this is an offensive COA, units 
are assigned V-Lanes to define their movement.  The 
exclamation points indicate priority for GS.  The 
values underneath the unit names display the units’ 
percentage of general support, the units’ core combat 
power and the combat power of any subordinate forces 
Task Organized (TO) to the unit.  Each unit’s total 

combat power is displayed in bold 

1. Offensive COA Variables 

The Offensive COA variable set defines the movement of 

the attacking force across the game board.  The Invention 

Disclosure document by Schlabach and Nielsen defines the 

following variables. 
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 Number Abreast (Num abreast)—The number of 

columns used by an attacking force.  This value 

is dependent on available V-Lanes and subordinate 

units. 

 Unit Formation—Outlines the position of each unit 

based on the Number Abreast and number of 

subordinate units.  For example, a value of (0, 

1, 1) indicates that there are three subordinate 

units in two columns.  The first unit is in 

column “0,” while the second and third units are 

in column “1.” 

 Unit Boundaries—Defines the V-Lane boundaries of 

the unit columns.  In Figure 23, a three abreast 

formation is given the boundaries (2, 5).  This 

means that the first column will advance along V-

Lanes 0-2, the second column will use V-Lanes 3-

5, and the third column will use the remaining V-

Lanes.  The illustration of this is seen in 

Figure 24. 

 Unit Assignments—Assigns Subordinate units to 

particular formation slots.  The numbers 

correspond to the Subordinate selection panel in 

the middle of the FCOA creation menu.  A value of 

(2, 3, 1) would assign the second subordinate to 

the first formation slot, the third subordinate 

to the second slot, and the first subordinate to 

the third slot. 

 



 49

 Priority of General Support (GS)—Determines the 

priority of GS by formation slot.  In the 

visualization of the COA, higher priority is 

indicated by increased exclamation points as seen 

in Figure 24. 

 Severity of GS by Formation Slot—Shows the 

percentage of GS allocated to each formation 

slot. 

 Left and Right Boundaries (L. Bndry, R.Bndry)—

These controls restrict subordinate units’ 

movements to particular V-Lanes.  In Figure 25, 

the unit in the second column is given wider left 

and right boundaries than the other units. 

 Upon Penetration—Describes unit actions after it 

penetrates an enemy defensive position.  This 

variable is not completely implemented in the 

battle simulations but is expected in subsequent 

versions of the BBE. 

 At Objective (OBJ)—Describes unit actions once it 

reaches its objective.  This variable is not 

completely implemented in the battle simulations 

but is expected in subsequent versions of the 

BBE. 

 Stutter Start—Sets a delay for initial unit 

movement. 
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 Bypass Criteria—Determine the level of defensive 

force that will be bypassed once the LDT has been 

penetrated.  Ranges go from squad (SQD) to 

battalion (BN). 

 Withdrawal Criteria—Indicates the unit strength 

level at which the unit will withdraw from 

combat.  Expressed as a percentage of overall 

strength. 

 Follow on Support (F&S) or Reserve—Used only if 

the subordinate unit is in a reserve slot in the 

formation. 

 Reserve Lane—Determines the V-Lane for a reserve 

unit. 

 Reserve Threshold—Determines the subordinate 

strength level at which it will employ its 

reserve unit. 

 Reserve Guidance—Directs the action of the 

reserve unit.  Reserve units can stay in assigned 

V-Lanes or be set to attack either the “best-

dent,” “best-hole” (penetration of defense), or 

“first-hole.”  This variable is not completely 

implemented in the battle simulations. 

 Reserve Lag Distance—This variable controls the 

distance that a subordinate unit assigned a 

reserve task will stay behind the unit it is 

supporting. (Schlabach, 2009, p 18-20) 
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2. Defensive COA Variables 

The defensive COA menu has several variables that are 

the same as in the offensive COA menu.  Number abreast, 

formation assignments, boundaries, GS priority and 

severity, and withdrawal criteria are also in the defensive 

COA variable set.  Unlike offensive COA creation, the 

defensive COA set focuses on unit placement, not unit 

movement.  The following variables are exclusive to the 

defensive COA menu. 

 Anchor LDT—Defines the LDT that will be defended.  

Defensive units will be placed on the mobility 

corridors that make up the LDT.  In Figure 26, 

the anchor LDT is LDT-5.  Units are responsible 

for defending sections of V-Lanes as they 

intersect LDT-5. 

 Anchor Line Setback—Sets the distance a unit will 

move back from the anchor LDT. 

 Reinforce Policy—Determines which neighboring 

units a non-attacked subordinate will reinforce. 

 Delay or Reserve—Determines if a non-main line 

defense unit is set in a Delay or Reserve 

mission.  In the example COA in Figure 25 and 

Figure 26, D Company is set as a reserve unit. 

 Delay Depth—Distance behind the anchor LDT for a 

unit ordered to delay. 

 Reserve Lag Distance—Distance behind the anchor 

LDT for a unit set to reserve. (Schlabach, 2009, 

pp. 15-17) 
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Figure 25.   The ECOA creation menu with defensive COA 

variables 
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Figure 26.   Graphical visualization of the ECOA displayed 

in Figure 25.  In this defensive COA, units are 
positioned at LDT-5.  Each unit is given a range of 
V-Lanes that they are responsible for blocking.  D 
Company is set to act as reserves for B Company 
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D. WARGAMING 

Once a suitable set of ECOAs and FCOAs has been 

constructed, the mission planner can move on to the Wargame 

menu seen in Figure 27.  From this menu, the mission 

planner can set the desired end state, visualize a sample 

battle between a FCOA and an ECOA, and obtain evaluation 

scores for the FCOA set. 

 

Figure 27.   The Wargame menu 

1. Desired End State 

The desired end state (DES) in the BBE reflects the 

commander’s intent that is created during the MDMP.  

Commanders can use the DES menu, seen in Figure 28, to 

“select criteria that reflect how he [or she] would like 

the battlefield to ‘look’ at the end of a successful 

mission” (Schlabach, 2009, p. 28).   
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Figure 28.   The Desired End State menu 

End state criteria can include total mission time, 

overall force levels, unit force levels, and unit strength 

on particular mobility corridors.  The current list of 

selected criteria is displayed in the top left of the DES 

menu.  Each individual criterion is given a weight factor 

that reflects its relative importance to the commander. 

2. Battle Visualization 

The BBE also allows planners to visualize sample COA 

engagements as seen in Figure 29.  Battle visualization 

helps the mission planner see how units are moving across 

the V-Lanes and confirms desired placement of defensive 

forces.  Planners can also track a unit’s status during a 

particular COA. 
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Figure 29.   The Battle visualization screen.  Controls at 
the bottom of the screen allow the user to advance 
the simulation.  Unit information and MC data are 

displayed to the right of the MCOO 

3. COA Evaluations 

The BBE evaluates battles using a modified Lanchester 

equation with modified Dupuy QJMA coefficients (Schlabach, 

2007, p. 3).  Combat occurs anytime a defensive unit and an 

offensive unit enter the same mobility corridor.  Attrition 

rates are determined by the combat strength of each unit, 

terrain multipliers in the mobility corridor, and the 

mission postures and morale set earlier.  Battle outcomes 

are deterministic, so the same FCOA and ECOA battles will 

produce the same result in each battle.  

Each FCOA is evaluated against the entire set of ECOAs 

using the desired end-state variables, producing an 

evaluation matrix seen in Figure 30.  The individual scores 

of the FCOA against each ECOA are weighted according to the 
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user-assigned probability that the enemy will use the ECOA.  

The scores are then summed to produce the FCOA’s total 

score. 

 

Figure 30.   An FCOA evaluation matrix 

E. THE BBE GENETIC ALGORITHM 

As mentioned earlier, each FCOA maps to a bit string 

that represents values in the COA variable set.  The FCOA’s 

score is the result of the fitness function provided by the 

desired end-state variables.  Since the BBE is able to 

generate a population of solution strings, and has a way to 

evaluate each string, it can run a genetic algorithm to 

find FCOAs that maximize COA scores.  The BBE genetic 

algorithm is accessed from the bottom left corner of the 

Wargame menu. 

1. Results and Analysis 

The results of the genetic algorithm are presented in 

the BBE Search Results window, seen in Figure 31.  The 

window displays the current population of solution strings 

with a shorthand description that includes the COA 
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formation and boundaries.  Controls for viewing filters are 

positioned on the right side of the menu.  Additionally, 

convergence data and the average population score are shown 

on the left side of the menu.  The convergence plot can 

display the best, worst, and average score in the 

population.   

 

Figure 31.   The BBE Search Results menu   

Mission planners can also choose to display the “cream 

of the crop,” the highest-scoring solutions found 

throughout all of the generations, by pressing the button 

at the bottom of the menu.  This display is useful because 

it includes FCOAs that may have been lost in previous 

generations.  The Cream of the Crop display is shown in 

Figure 32. 
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Figure 32.   The Cream of the Crop display 

FCOAs that look promising to the mission planner can 

be added to the candidate list in the Wargame menu by 

pressing the “Promote selection to MDMP” button, which is 

present in both the search results and Cream of the Crop 

displays. 

The search results window also has links to three 

analytical windows for further COA evaluation.  Shown in 

Figure 33, the Risk Analysis window evaluates how changes 

to the ECOA set affect the scores of FCOAs created by the 

genetic algorithm.  The Evaluation Criteria Analysis 

window, seen in Figure 34, is similar to the Risk Analysis 

window, except instead of using changes to the ECOA set, it 

focuses on the desired end-state variable.  Finally, the 

Pareto Analysis window, in Figure 35, allows mission 

planners to test trade-offs in both the ECOA set and 

evaluation criteria to find optimal FCOAs to promote to the 

candidate set. 



 60

 

Figure 33.   The Risk Analysis window 

 

 

Figure 34.   The Evaluation Criteria Analysis window 
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Figure 35.   The Pareto Analysis window 

 

2. Genetic Algorithm Parameters 

The BBE also offers some advanced controls over the 

implementation of the genetic algorithm.  The genetic 

algorithm search parameters menu is shown in Figure 36. 
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Figure 36.   The Genetic Algorithm Search Parameters menu.  
Currently, only items in the on the left side are 

implemented  

Mission planners have control over the following 

parameters: 

 Population Size—Set in increments ranging from 200 

to 2000. 

 Number of Generations—Set in increments ranging 

from 25 to 400. 

 Selection Technique—Set to either roulette wheel 

selection or two-, three=, or four-way tournament. 

 Crossover Technique—Set to either one or two-point 

crossover.  The probability variable represents the 

chance that two strings selected for mating will 

actually breed.  It can be set from 0.4 to a 

maximum of 0.9. 
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 Mutation Rate—Set in increments ranging from 0.001 

to a maximum of 0.04. 

 Replacement Policy—Set to full Darwin, Half and 

Half, and full parricide.  In full Darwin, only the 

highest-scoring strings are selected for the next 

generation.  Half and Half takes a mix of the best 

parent and best child strings.  Full parricide 

takes only child strings into the next generation. 

 Seed Policy—Soft seeding puts FCOA candidates from 

the Wargame menu list into the first generation.  

Hard seeding puts FCOA candidates in each 

generation.  Seeding cannot be done if overlapping 

generations is enabled. 

 Overlapping Generations—Enables overlapping generations.  

This is used to implement De Jong’s crowding model. 

 Generation Gap—Sets the generation gap, if 

overlapping generations is enabled. 

 Crowding Factor—Sets the crowding factor, if 

overlapping generations is enabled. 

F. SUMMARY 

The BBE provides a powerful tool to enable the 

consolidation of several IPB products and encoding of COAs 

as bit strings.  Its genetic algorithm can be used to 

discover new FCOAs and can be tailored using an advanced 

set of parameters.  The next chapter outlines the method to 

test the effects these parameters have over the genetic 

algorithm and the search results. 
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IV. METHODS 

A. INTRODUCTION 

This chapter outlines the methods that were used to 

test the effects that certain parameter settings have on 

the BBE’s genetic algorithm.  The experiment consisted of 

multiple searches for FCOAs using different configurations 

of the genetic algorithm.  In order to provide a constant 

search space, a single battle scenario was used in all BBE 

search runs.  

B. THE SCENARIO 

The test scenario was a modified version of a battle 

provided by Eric Nielsen and Jerry Schlabach.  The battle 

simulates a friendly force of two combined arms battalions 

and a Reconnaissance, Surveillance, and Target Acquisition 

(RTSA) squadron engaging an enemy force of infantry 

fighting vehicles and tanks.  Full orders of battle are 

provided in Appendix A. 

The friendly and enemy forces were both given full 

strength and good morale, as seen in Figure 37.  The 

friendly forces were conducting a hasty attack, while the 

enemy forces prepared a hasty defense.  The time slice for 

the simulation was set to 18 minutes.  Neither side was 

given any ISR, C2, or air superiorities.   
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Figure 37.   Battle variables for the test scenario 

There were no candidate FCOAs created for wargaming.  

The scenario did include five ECOA nominees.  The 

visualizations for these ECOAs are included in Appendix A.  

COA evaluation criteria were kept minimal.  FCOA were 

evaluated on overall attacker and defender remaining 

strength at the end of the battle.  Additionally, FCOAs 

were rated on friendly strength levels at the end of the 

respective V-Lanes.  The list of criteria is shown in 

Figure 38.  
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Figure 38.   The COA evaluation criteria.  Note “sub-MC” 
criteria are for the mobility corridors at the end of 

the various V-Lanes  

C. PARAMETERS TESTED 

In total, seventy-six search runs were completed with 

various configurations of the genetic algorithm parameters.  

All searches were completed with a population size of 400 

and run for 50 generations.  Seeding was not used in any of 

the searches.  Each configuration was done once with one-

point crossover, and once with two-point crossover. 

1. Analysis of Impact of Selection Technique 

The first 48 searches were completed in four blocks 

based on selection technique.  Each selection technique was 

given twelve searches with varying parameter configurations 

for crossover, breeding probability and mutation (shown in  
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Table 2).  In these initial searches, replacement policy 

was set to full Darwin.  Overlapping populations were not 

enabled. 

Run #  Crossover  Probability  Mutation 
1  One‐Point  0.7  0.005 
2  One‐Point  0.7  0.005 
3  Two‐Point  0.7  0.005 
4  Two‐Point  0.7  0.005 
5  One‐Point  0.4  0.005 
6  Two‐Point  0.4  0.005 
7  One‐Point  0.9  0.005 
8  Two‐Point  0.9  0.005 
9  One‐Point  0.9  0.005 
10  Two‐Point  0.9  0.005 
11  One‐Point  0.7  0.01 
12  Two‐Point  0.7  0.01 

Table 2.   The configuration of parameters for crossover, 
breeding probability and mutation used to test 

selection techniques. 

2. Analysis of Impact of Replacement Policies 

After testing each of the different selection 

techniques, the next sixteen runs were configured to test 

the replacement policies of half Darwin and full parricide.  

For these runs breeding probability and mutation were fixed 

at 0.7 and 0.005.  Each replacement policy was run with 

each of the four selection techniques twice, once each for 

both one and two-point crossover. 

3. Analysis of the Crowding Model 

The final twelve runs enabled overlapping generations, 

and tested the implementation of De Jong’s crowding model.  

All searches were conducted using full Darwin replacement.  

Breeding probability and mutation rate were again fixed at 

0.7 and 0.005, respectively.  The crowding factor was fixed 
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at three for all runs.  Half of the runs were done with a 

generation gap of 0.5, the other half used 0.9. 

D. DATA COLLECTION 

The average FCOA score and the overall best FCOA score 

in the final generation were recorded for each search run.  

The convergence charts, showing the best, worst, and 

average scores for each generation, were recorded through 

screen captures.  Additionally, the diversity in FCOAs in 

the final generation was examined.  This was done by 

examining number abreast and formation boundaries displayed 

in the Search results window.  Populations that were 

composed of FCOAs that all used the same number abreast, 

and had the same formation boundaries, were considered less 

diverse than those that had a variety of number abreast and 

varying formation boundaries. 

E. SUMMARY 

This chapter reviewed the experiment setup to test 

specific genetic algorithm parameters.  The following 

chapter reviews the results of the search runs. 
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V. RESULTS AND ANALYSIS 

A. INTRODUCTION 

This chapter presents the results of the BBE search 

runs and analyzes the data according to the different 

genetic algorithm parameters.  The configurations and 

outcomes for the entire set of search runs are presented in 

Appendix B. 

B. GENERAL STATISTICS 

The FCOAs that used the three-abreast formation 

typically had higher evaluation scores and made up most of 

the final generation in a majority of search runs.  FCOA 

using the one-abreast formation did not score well, and 

were almost never seen in any of the final generations.   

The maximum FCOA score found by any of the searches 

was 1539.112, using three-way tournament selection, 0.7 for 

breeding probability, 0.005 mutation, full Darwin 

replacement, and a non-overlapping population.  The minimum 

score was 1450.9069.  It was found using roulette wheel 

selection, one-point crossover, 0.7 breeding probability, 

0.005 mutation, and full parricide replacement.  The mean 

of the “best” string found for all searches was 1507.4088, 

with a standard deviation of 21.288.  It should be noted 

that multiple search configurations returned “best” strings 

with the score 1524.7787.  It is possible that these 

configurations found either the same FCOA, or a series of 

similar FCOAs.  Since some features were not implemented in 

the version of the BBE used for testing, FCOAs that 

differed only in those variables produced the same 
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evaluation score.  With regard to the average score in the 

final generation for each search configuration, the mean 

value was 1463.8212 with a standard deviation of 69.202. 

C. SELECTION TECHNIQUE 

The selection technique parameter did not appear to 

greatly affect the outputs of the search runs.  Table 3 

shows the best FCOA found and the mean final generation 

average score for each of the selection techniques.  These 

comparisons do not include runs using overlapping 

generations, which were not enabled for roulette wheel 

selection in the BBE version used for testing. 

Selection Technique 
Best FCOA Score 

Found 
Mean Final Generation 

Average Score 

Roulette Wheel  1524.7787  1470.622781 

Two Way 
Tournament  1535.9318  1466.11395 

Three Way 
Tournament  1539.1112  1462.831831 

Four Way 
Tournament  1524.9167  1466.100356 

Table 3.   Comparisons of selection technique performance 

T-test comparisons, with a significance level of 0.05 

of the mean final generation average scores, did not show 

any differences among the selection techniques.   

D. CROSSOVER 

There were also no apparent differences in outcomes 

between one- and two-point crossover.  Table 4 displays the 

best FCOA found and mean final generation average score for 

both of the crossover styles. 
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Crossover 
Best FCOA Score 

Found 
Mean Final Generation 

Average Score 

One‐point  1539.1112  1461.881234 

Two‐point  1538.9307  1464.988335 

Table 4.   Comparisons for crossover technique 

E. REPLACEMENT POLICY 

The selection of replacement policy had the greatest 

affect on the genetic algorithm search results of any of 

the tested parameters.  Comparisons of replacement policy 

were made using search runs with 0.7 breeding probability, 

0.005 mutation rate, and non-overlapping populations.  Full 

parricide performed significantly worse than either half or 

full Darwin, as seen in Table 5.  However, full parricide 

did produce the most diverse final populations.  Full 

parricide runs were the only searches to have FCOAs that 

used one-abreast formations present in the final 

generation. 

Replacement Policy 
Best FCOA Score 

Found 
Mean Final Generation Average 

Score 

Full Darwin  1539.1112  1495.095713 

Half Darwin  1524.7787  1489.7632 

Full Parricide  1509.8441  1280.414438 

Table 5.   Comparisons of replacement polices 

Figure 39 shows the difference in convergence charts 

for a typical search run using full Darwin, half Darwin, 

and full parricide replacement policies.  The full Darwin 

run shows steady improvements to the worst and average 

scores through each generation.  The half Darwin run shows 

similar improvements, although not to the same degree as  
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the full Darwin run.  The full parricide run shows a slight 

improvement in population average, but erratic behavior in 

the worst FCOA score.  

 

   
Figure 39.   Convergence plots from three search runs.  The 

first is from a full Darwin search, the second a half 
Darwin, and the third a full parricide.  In each 

plot, the black represents the best FCOA score, grey 
is the average score, and yellow is the worst score 

Figure 39 also illustrates one of the key differences 

between full and half Darwin searches.  Searches using full 

Darwin tended to converge rather quickly, with later 

generations composed of essentially the same FCOA.  Half 

Darwin searches would converge slower than those using full 

Darwin, maintaining a greater variety of FCOAs in each 

generation. 

F. THE CROWDING MODEL 

The implementation of De Jong’s crowding model showed 

improved diversity in the final generation, with a reduced 

mean final generation average score than similar searches 

that did not use overlapping generations.  The reduction in 

mean final generation average score was most likely due to 

the increased diversity, which would allow lower scoring 

FCOAs to remain in the general population longer.  
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Increasing the generation gap from 0.5 to 0.9 reduced the 

diversity, and made the searches behave more like a typical 

full Darwin search. 

G. SUMMARY 

Of the three main parameters tested (crossover, 

selection technique, and replacement policy) only changes 

to replacement policy showed any drastic effect on the 

performance of the genetic algorithm.  Searches using full 

and half Darwin significantly outperformed full parricide 

searches with regards to best FCOA found and mean final 

generation average score.  Additionally, the crowding model 

in the BBE did improve the diversity in the final 

generation.  Although this may have lowered the mean final 

generation average score for searches using the crowding 

model, it did provide the user with a greater variety of 

distinct FCOAs to examine. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A. INTRODUCTION 

This thesis provided a basic investigation of the 

genetic algorithm implementation in the BBE.  The 

fundamentals of the MDMP and genetic algorithms were 

presented as a foundation for the study.  In the experiment, 

various parameters of the BBE’s genetic algorithm were tested 

through a variety of searches over a fixed battle scenario.  

This chapter draws conclusions based on the research and the 

results of the experiments.  It also recommends possible 

improvements to the BBE and outlines areas for future 

research. 

B. CONCLUSIONS 

This thesis proposed research questions in three main 

areas dealing with the BBE’s genetic algorithm.  The first 

area dealt with the number of FCOAs created and the ability 

to separate tactically-desirable FCOAs from those that are 

not logical.  The BBE was able to generate and evaluate 

thousands of FCOAs in search runs that typically lasted 

fifteen minutes for the conditions modeled.  FCOAs could be 

sorted and examined efficiently using the tools provided in 

the search results window.  While the actual “usefulness” 

of created COAs was not tested in the experiment, each 

search run produced over 400 possible COAs for examination.  

In addition, the BBE provided features such as the Cream of 

the Crop display and analysis tools to conduct further 

investigation of the created COAs. 
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The second area of research questions investigated how 

changes to the genetic algorithm parameters affected the 

FCOAs generated and the diversity and convergence of the 

BBE search results.  The experiment identified replacement 

policy as the parameter having the greatest effect on 

search results and population diversity.  Full and half 

Darwin searches provided the highest scoring FCOA 

populations.  Additionally, using De Jong’s crowding model, 

the BBE could increase the diversity in searches, without 

sacrificing much in convergence behavior.   

The final research area dealt with the background 

information the BBE provided to its users regarding genetic 

algorithm parameter settings.  Mission planners should be 

given some control over the genetic algorithm parameters to 

tailor searches to fit their requirements.  Changes to 

mission variables and evaluation criteria change the 

possible solution space for the FCOA search.  Since the 

solution space can change based on the input conditions, 

there is no one constant optimal setting for the genetic 

algorithm parameters.  While the experiment did not test 

multiple mission variables or different evaluation 

criteria, the research for this thesis highlighted the 

importance of understanding the functions of the genetic 

algorithm parameters.  Giving the mission planners more 

information regarding the parameter settings is a logical 

way to improve their use of the BBE. 

C. IMPROVEMENTS TO THE BBE 

The following is a list of possible improvements to 

the BBE interface: 
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 Explanations of the genetic algorithm parameters 

and their effects in the BBE would be useful to 

some users.  For example, the Pareto analysis 

window contains a link to a Wikipedia entry 

explaining how the analysis works.  A similar 

link or help screen could assist users who are 

not familiar with how genetic algorithms work. 

 An audio or visual prompt that a search has been 

completed would help cue the user.  Since the BBE 

search can run in the background, mission 

planners can use other features of the BBE, or 

even other programs, while the search is being 

conducted.  It would be useful to know when the 

search is finished instead of having to 

constantly check the search results screen. 

 The Pareto Analysis, Risk Analysis, and 

Evaluation Criteria Analysis functions are 

currently only available to FCOAs found in the 

genetic algorithm search.  It would be useful to 

extend this functionality to FCOAs in the 

candidate list. 

 The ability to sort FCOAs by score in the search 

results window would allow users more options for 

reviewing the outcome of the genetic algorithm. 

 The ability to graphically display COAs, seen in 

the COA construction windows, would also be 

useful in the search results window.  This would 

allow users to compare FCOAs visually without 

necessarily promoting them to the candidate list. 
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D. FUTURE WORK 

Possible future research topics regarding the BBE 

include: 

 Verification and validation of the underlying 

combat model of the BBE. 

 Further investigation of the genetic algorithm 

parameters with support from the Naval 

Postgraduate School Simulation Experiments and 

Efficient Designs (SEED) Center.  Using design 

strategies such as Nearly Orthogonal Latin 

Hypercube would help to identify interactions 

between the genetic algorithm parameters. 

 Research into how mission parameters and 

evaluation criteria affect the genetic algorithm 

performance. 

 The Joint Professional Military Education (JPME) 

courses at the Naval Postgraduate School require 

students to use the MDMP to develop COAs as part 

of a class project.  It would be interesting to 

develop a scenario that would allow students in 

the JPME classes to use the BBE as part of their 

class project.  Student feedback would be 

beneficial to improving the functionality of the 

BBE. 

 User studies on the layout of the graphical user 

interface (GUI) for the various BBE windows. 

 User studies to determine the operational benefit 

of BBE use in development and evaluation of COAs 
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E. SUMMARY 

The BBE is an interesting tool that can potentially be 

of great asset to mission planners.  The relatively simple 

user interface of the BBE aids planners in the construction 

and wargaming of multiple COAs.  Additionally, the BBE 

provides the computational mechanisms to automatically 

generate and evaluate thousands of possible COAs through 

its genetic algorithm.  Further study of the tool will 

hopefully demonstrate its viability and value to assisting 

mission planners in dealing with the complexity of the 

battlespace environment. 
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APPENDIX A.  THE GENETIC ALGORITHM TEST SCENARIO—
ORDERS OF BATTLE AND ECOAS 

A INTRODUCTION 

This section contains screen captures showing the 

orders of battle and ECOA visualizations for the test 

scenario. 

B. ORDERS OF BATTLE 

1. Friendly Order of Battle 

 

 

Figure 40.   General Support Units.  The first column 
indicates if a unit is Task Organizable.  The fourth 

column shows a unit’s Base Combat Power (BCP) 
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Figure 41.   1st Combined Arms Battalion 

 
Figure 42.   2nd Combined Arms Battalion 

 
 
 
 
 



 85

 
 
 

 
Figure 43.   Reconnaissance, Surveillance, and Target 

Acquisition (RTSA)Squadron 

2. Enemy Order of Battle 

 

 

Figure 44.   General Support Units 
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Figure 45.   Alpha Company was composed of BMP-2 infantry 

fighting vehicles 

 
Figure 46.   Bravo Company 
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Figure 47.   Charlie Company 

 
Figure 48.   Delta Company was composed of T-80U tank 

platoons 
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C. ECOAS 

 

Figure 49.   Balanced defense with Tank Company in reserve 
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Figure 50.   Balanced defense with tank platoons integrated 

into Alpha, Delta, and Charlie Companies 
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Figure 51.   Forward defense with tank platoons kept in 

reserve 
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Figure 52.   Strong right defense with tank platoon 

supporting Alpha Company 
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Figure 53.   Strong left defense with Delta Company in 

reserve of Charlie Company 
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APPENDIX B.  BBE RUN RESULTS 

 

Run # 
Selection 
Technique  Crossover  Probability  Mutation  Replacement  Seed  Overlapping 

Generation 
Gap  Niching  Best  Average 

1  Roulette  One‐Point  0.7  0.005  Full Darwin  Unseeded  NA  NA  NA  1524.779  1508.632 

2  Roulette  One‐Point  0.7  0.005  Full Darwin  Unseeded  NA  NA  NA  1471.941  1446.781 

3  Roulette  Two‐Point  0.7  0.005  Full Darwin  Unseeded  NA  NA  NA  1523.655  1511.105 

4  Roulette  Two‐Point  0.7  0.005  Full Darwin  Unseeded  NA  NA  NA  1523.901  1517.003 

5  Roulette  One‐Point  0.4  0.005  Full Darwin  Unseeded  NA  NA  NA  1480.474  1450.219 

6  Roulette  Two‐Point  0.4  0.005  Full Darwin  Unseeded  NA  NA  NA  1502.903  1471.299 

7  Roulette  One‐Point  0.9  0.005  Full Darwin  Unseeded  NA  NA  NA  1514.067  1504.44 

8  Roulette  Two‐Point  0.9  0.005  Full Darwin  Unseeded  NA  NA  NA  1524.779  1517.748 

9  Roulette  One‐Point  0.9  0.005  Full Darwin  Unseeded  NA  NA  NA  1524.779  1522.497 

10  Roulette  Two‐Point  0.9  0.005  Full Darwin  Unseeded  NA  NA  NA  1524.779  1521.075 

11  Roulette  One‐Point  0.7  0.01  Full Darwin  Unseeded  NA  NA  NA  1517.954  1489.552 

12  Roulette  Two‐Point  0.7  0.01  Full Darwin  Unseeded  NA  NA  NA  1524.779  1502.091 

Run # 
Selection 
Technique  Crossover  Probability  Mutation  Replacement  Seed  Overlapping 

Generation 
Gap  Niching  Best  Average 

13  2‐Way  One‐Point  0.7  0.005  Full Darwin  Unseeded  NA  NA  NA  1522.51  1510.085 

14  2‐Way  One‐Point  0.7  0.005  Full Darwin  Unseeded  NA  NA  NA  1524.779  1508.325 

15  2‐Way  Two‐Point  0.7  0.005  Full Darwin  Unseeded  NA  NA  NA  1501.354  1483.757 

16  2‐Way  Two‐Point  0.7  0.005  Full Darwin  Unseeded  NA  NA  NA  1524.779  1510.205 

17  2‐Way  One‐Point  0.4  0.005  Full Darwin  Unseeded  NA  NA  NA  1467.743  1434.7 

18  2‐Way  Two‐Point  0.4  0.005  Full Darwin  Unseeded  NA  NA  NA  1482.074  1453.185 

19  2‐Way  One‐Point  0.9  0.005  Full Darwin  Unseeded  NA  NA  NA  1535.932  1505.335 

20  2‐Way  Two‐Point  0.9  0.005  Full Darwin  Unseeded  NA  NA  NA  1514.067  1503.611 

21  2‐Way  One‐Point  0.9  0.005  Full Darwin  Unseeded  NA  NA  NA  1524.779  1524.428 
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22  2‐Way  Two‐Point  0.9  0.005  Full Darwin  Unseeded  NA  NA  NA  1502.526  1493.64 

23  2‐Way  One‐Point  0.7  0.01  Full Darwin  Unseeded  NA  NA  NA  1517.177  1486.433 

24  2‐Way  Two‐Point  0.7  0.01  Full Darwin  Unseeded  NA  NA  NA  1523.655  1503.077 

Run # 
Selection 
Technique  Crossover  Probability  Mutation  Replacement  Seed  Overlapping 

Generation 
Gap  Niching  Best  Average 

25  3‐Way  One‐Point  0.7  0.005  Full Darwin  Unseeded  NA  NA  NA  1507.47  1476.639 

26  3‐Way  One‐Point  0.7  0.005  Full Darwin  Unseeded  NA  NA  NA  1539.111  1513.576 

27  3‐Way  Two‐Point  0.7  0.005  Full Darwin  Unseeded  NA  NA  NA  1538.931  1515.742 

28  3‐Way  Two‐Point  0.7  0.005  Full Darwin  Unseeded  NA  NA  NA  1507.471  1485.641 

29  3‐Way  One‐Point  0.4  0.005  Full Darwin  Unseeded  NA  NA  NA  1507.963  1444.083 

30  3‐Way  Two‐Point  0.4  0.005  Full Darwin  Unseeded  NA  NA  NA  1504.385  1444.028 

31  3‐Way  One‐Point  0.9  0.005  Full Darwin  Unseeded  NA  NA  NA  1512.907  1506.041 

32  3‐Way  Two‐Point  0.9  0.005  Full Darwin  Unseeded  NA  NA  NA  1523.655  1514.737 

33  3‐Way  One‐Point  0.9  0.005  Full Darwin  Unseeded  NA  NA  NA  1535.932  1509.863 

34  3‐Way  Two‐Point  0.9  0.005  Full Darwin  Unseeded  NA  NA  NA  1524.779  1511.693 

35  3‐Way  One‐Point  0.7  0.01  Full Darwin  Unseeded  NA  NA  NA  1500.668  1488.765 

36  3‐Way  Two‐Point  0.7  0.01  Full Darwin  Unseeded  NA  NA  NA  1520.194  1490.212 

Run # 
Selection 
Technique  Crossover  Probability  Mutation  Replacement  Seed  Overlapping 

Generation 
Gap  Niching  Best  Average 

37  4‐Way  One‐Point  0.7  0.005  Full Darwin  Unseeded  NA  NA  NA  1514.067  1500.617 

38  4‐Way  One‐Point  0.7  0.005  Full Darwin  Unseeded  NA  NA  NA  1487.596  1471.175 

39  4‐Way  Two‐Point  0.7  0.005  Full Darwin  Unseeded  NA  NA  NA  1521.606  1492.387 

40  4‐Way  Two‐Point  0.7  0.005  Full Darwin  Unseeded  NA  NA  NA  1524.917  1469.861 

41  4‐Way  One‐Point  0.4  0.005  Full Darwin  Unseeded  NA  NA  NA  1497.272  1462.5 

42  4‐Way  Two‐Point  0.4  0.005  Full Darwin  Unseeded  NA  NA  NA  1520.513  1476.664 

43  4‐Way  One‐Point  0.9  0.005  Full Darwin  Unseeded  NA  NA  NA  1524.779  1521.538 

44  4‐Way  Two‐Point  0.9  0.005  Full Darwin  Unseeded  NA  NA  NA  1514.067  1496.585 

45  4‐Way  One‐Point  0.9  0.005  Full Darwin  Unseeded  NA  NA  NA  1524.779  1514.853 

46  4‐Way  Two‐Point  0.9  0.005  Full Darwin  Unseeded  NA  NA  NA  1518.275  1511.849 
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47  4‐Way  One‐Point  0.7  0.01  Full Darwin  Unseeded  NA  NA  NA  1522.51  1500.408 

48  4‐Way  Two‐Point  0.7  0.01  Full Darwin  Unseeded  NA  NA  NA  1524.121  1490.603 

Run # 
Selection 
Technique  Crossover  Probability  Mutation  Replacement  Seed  Overlapping 

Generation 
Gap  Niching  Best  Average 

49  Roulette  Two‐Point  0.7  0.005  Half Darwin  Unseeded  NA  NA  NA  1523.901  1509.123 

50  2‐Way  Two‐Point  0.7  0.005  Half Darwin  Unseeded  NA  NA  NA  1512.723  1497.064 

51  3‐Way  Two‐Point  0.7  0.005  Half Darwin  Unseeded  NA  NA  NA  1511.797  1465.825 

52  4‐Way  Two‐Point  0.7  0.005  Half Darwin  Unseeded  NA  NA  NA  1524.779  1516.208 

53  Roulette  Two‐Point  0.7  0.005  Full Parricide  Unseeded  NA  NA  NA  1467.653  1298.411 

54  2‐Way  Two‐Point  0.7  0.005  Full Parricide  Unseeded  NA  NA  NA  1464.273  1290.42 

55  3‐Way  Two‐Point  0.7  0.005  Full Parricide  Unseeded  NA  NA  NA  1464.301  1293.548 

56  4‐Way  Two‐Point  0.7  0.005  Full Parricide  Unseeded  NA  NA  NA  1475.908  1263.943 

57  Roulette  One‐Point  0.7  0.005  Half Darwin  Unseeded  NA  NA  NA  1520.348  1491.291 

58  2‐Way  One‐Point  0.7  0.005  Half Darwin  Unseeded  NA  NA  NA  1504.472  1475.117 

59  3‐Way  One‐Point  0.7  0.005  Half Darwin  Unseeded  NA  NA  NA  1498.573  1469.747 

60  4‐Way  One‐Point  0.7  0.005  Half Darwin  Unseeded  NA  NA  NA  1503.2  1493.731 

61  Roulette  One‐Point  0.7  0.005  Full Parricide  Unseeded  NA  NA  NA  1450.907  1268.697 

62  2‐Way  One‐Point  0.7  0.005  Full Parricide  Unseeded  NA  NA  NA  1476.31  1278.443 

63  3‐Way  One‐Point  0.7  0.005  Full Parricide  Unseeded  NA  NA  NA  1451.964  1275.17 

64  4‐Way  One‐Point  0.7  0.005  Full Parricide  Unseeded  NA  NA  NA  1509.844  1274.684 

Run # 
Selection 
Technique  Crossover  Probability  Mutation  Replacement  Seed  Overlapping 

Generation 
Gap  Niching  Best  Average 

65  3‐Way  Two‐Point  0.7  0.005  Full Darwin  Unseeded  Yes  0.5  3  1512.593  1414.43 

66  2‐Way  Two‐Point  0.7  0.005  Full Darwin  Unseeded  Yes  0.5  3  1467.596  1428.749 

67  4‐Way  Two‐Point  0.7  0.005  Full Darwin  Unseeded  Yes  0.5  3  1516.3  1444.09 

68  3‐Way  One‐Point  0.7  0.005  Full Darwin  Unseeded  Yes  0.5  3  1489.262  1419.772 

69  2‐Way  One‐Point  0.7  0.005  Full Darwin  Unseeded  Yes  0.5  3  1486.473  1455.536 

70  4‐Way  One‐Point  0.7  0.005  Full Darwin  Unseeded  Yes  0.5  3  1476.108  1418.365 

71  3‐Way  Two‐Point  0.7  0.005  Full Darwin  Unseeded  Yes  0.9  3  1490.371  1458.792 
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72  2‐Way  Two‐Point  0.7  0.005  Full Darwin  Unseeded  Yes  0.9  3  1487.043  1436.167 

73  4‐Way  Two‐Point  0.7  0.005  Full Darwin  Unseeded  Yes  0.9  3  1514.067  1494.353 

74  3‐Way  One‐Point  0.7  0.005  Full Darwin  Unseeded  Yes  0.9  3  1526.024  1506.213 

75  2‐Way  One‐Point  0.7  0.005  Full Darwin  Unseeded  Yes  0.9  3  1515.218  1478.282 

76  4‐Way  One‐Point  0.7  0.005  Full Darwin  Unseeded  Yes  0.9  3  1502.94  1444.956 
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